

18EC52

Fifth Semester B.E. Degree Examination, July/August 2022 Digital Signal Processing

Time: 3 hrs.
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Compute N-point DFT of a sequence
$\mathrm{x}(\mathrm{n})=\frac{1}{2}+\frac{1}{2} \cos \left(\frac{2 \pi}{\mathrm{~N}}\left(\mathrm{n}-\frac{\mathrm{N}}{2}\right)\right)$.
(10 Marks)
b. Compute circular convolution using DFT and IDFT for the following sequences
$\mathrm{x}_{1}=(1,2,3,1)$ and $\mathrm{x}_{2}(\mathrm{n})=\{4,3,2,2\}$.
(10 Marks)

OR

2 a. Obtain the relationship between DFT and Z-transform.
(10 Marks)
b. Let $\mathrm{x}(\mathrm{n})$ be a real sequence of length N and its N -point DFT is $\mathrm{x}(\mathrm{k})$, show that
i) $\quad \mathrm{X}(\mathrm{N}-\mathrm{K})=\mathrm{X}^{*}(\mathrm{~K})$
ii) $X(0)$ is real
iii) If N is even, then $X\left(\frac{N}{2}\right)$ is real.
(10 Marks)

Module-2

3 a. Find the response of an LII system with an impulse response $\mathrm{h}(\mathrm{n})=\{3,2,1\}$ for the input $\mathrm{x}(\mathrm{n})=\{2,-1,-1,-2,-3,5,6,-1,2,0,2,1\}$ using overlap add method use 8 -point circular convolution.
(10 Marks)
b. Develop the radix-2 decimation in frequency FFT algorithm for $\mathrm{N}=8$ and draw the signal flow graph.
(10 Marks)

OR

4 a. Find the output $\mathrm{y}(\mathrm{n})$ of a filter whose impulse response $\mathrm{h}(\mathrm{n})=\{1,2\}$ and the input signal to the filter is $\mathrm{x}(\mathrm{n})=\{1,4,3,2,7,4,-7,-7,-1,3,4,3\}$ using overlap save method. Use only 5 point circular convolution approach.
(10 Marks)
b. Using DIT-FFT algorithm, compute the DFT of a sequence $x(n)=(1,1,1,1,0,0,0,0)$.
(10 Marks)

Module-3

5 a. Let the coefficients a three stage FIR lattice structure be $\mathrm{K}_{1}=0.1, \mathrm{~K}_{2}=0.2$ and $\mathrm{K}_{3}=0.3$. Find the coefficients of the direct form - I FIR filter and draw its block diagram. ($\mathbf{1 0}$ Marks)
b. A linear time-invariant system is described by the following input-output relation. $2 y(n)-y(n-2)-4 y(n-3)=3 x(n-2)$. Realize the system in the following forms:
i) Direct form - I realization.
ii) Direct form - II realization.
(10 Marks)

OR

a. The desired frequency response of a lowpass filter is given by

$$
H_{d}\left(\mathrm{e}^{j w}\right)=H_{d}(w)=\left\{\begin{array}{cc}
\mathrm{e}^{-j 3 w}, & |w|<\frac{3 \pi}{4} \\
0, & \frac{3 \pi}{4}<|w|<\pi
\end{array}\right.
$$

Determine the frequency response of the FIR filter it Hamming window is used with $\mathrm{N}=7$.
b. Find the lattice-ladder structure for the filter given by the following difference equation:
$y(n)+\frac{3}{4}(n-1)+\frac{1}{4} y(n-2)=x(n)+2 x(n-1)$.
(10 Marks)

Module-4

7 a. Obtain a parallel realization for the system for the system described by

$$
\mathrm{H}(\mathrm{Z})=\frac{\left(1+\mathrm{z}^{-1}\right)\left(1+2 \mathrm{z}^{-1}\right)}{\left(1+\frac{1}{2} \mathrm{z}^{-1}\right)\left(1-\frac{1}{4} \mathrm{z}^{-1}\right)\left(1+\frac{1}{8} \mathrm{z}^{-1}\right)}
$$

(10 Marks)
b. Obtain the cascade realization of system
$H(z)=\left[2 z^{-1}-z^{-2}\right] \cdot\left[z^{-1}-z^{-2}\right]$.
(10 Marks)

OR

8 a. Design a Butterworth analog high pass filter that will meet the following specifications:
i) Maximum passband attenuation $=2 \mathrm{~dB}$
ii) Passband edge frequency $=200 \mathrm{rad} / \mathrm{sec}$
iii) Minimum stopband attenuation $=20 \mathrm{~dB}$
iv) Stopband edge frequency $=100 \mathrm{rad} / \mathrm{sec}$.
(12 Marks)
b. Realize the FIR filter whose transfer function is given by
$H(z)=1+\frac{3}{4} z^{-1}+\frac{17}{8} z^{-2}+\frac{3}{4} z^{-3}+z^{-4}$ using direct form $-I$.
(08 Marks)

Module-5

9 a. Explain the digital signal processors based on the Harvard architecture.
(10 Marks)
b. Find the signed Q-15 representation for the decimal number 0.560123 .
(10 Marks)

OR

10 a. Explain with neat block diagram floating point DS processor (TMS320C3X).
(10 Marks)
b. Explain fixed-point digital signal processors (architecture of the TMS320C54X family).
(10 Marks)

